Pandas数据类型之category的用法
Pandas数据类型之category的用法
创建category
使用Series创建
在创建Series的同时添加dtype="category"就可以创建好category了。category分为两部分,一部分是order,一部分是字面量:
In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [2]: s Out[2]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): ['a', 'b', 'c']
可以将DF中的Series转换为category:
In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]}) In [4]: df["B"] = df["A"].astype("category") In [5]: df["B"] Out[32]: 0 a 1 b 2 c 3 a Name: B, dtype: category Categories (3, object): [a, b, c]
可以创建好一个pandas.Categorical
,将其作为参数传递给Series:
In [10]: raw_cat = pd.Categorical( ....: ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False ....: ) ....: In [11]: s = pd.Series(raw_cat) In [12]: s Out[12]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): ['b', 'c', 'd']
使用DF创建
创建DataFrame的时候,也可以传入 dtype="category":
In [17]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}, dtype="category") In [18]: df.dtypes Out[18]: A category B category dtype: object
DF中的A和B都是一个category:
In [19]: df["A"] Out[19]: 0 a 1 b 2 c 3 a Name: A, dtype: category Categories (3, object): ['a', 'b', 'c'] In [20]: df["B"] Out[20]: 0 b 1 c 2 c 3 d Name: B, dtype: category Categories (3, object): ['b', 'c', 'd']
或者使用df.astype("category")将DF中所有的Series转换为category:
In [21]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}) In [22]: df_cat = df.astype("category") In [23]: df_cat.dtypes Out[23]: A category B category dtype: object
创建控制
默认情况下传入dtype='category' 创建出来的category使用的是默认值:
1.Categories是从数据中推断出来的。
2.Categories是没有大小顺序的。
可以显示创建CategoricalDtype来修改上面的两个默认值:
In [26]: from pandas.api.types import CategoricalDtype In [27]: s = pd.Series(["a", "b", "c", "a"]) In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True) In [29]: s_cat = s.astype(cat_type) In [30]: s_cat Out[30]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): ['b' < 'c' < 'd']
同样的CategoricalDtype还可以用在DF中:
In [31]: from pandas.api.types import CategoricalDtype In [32]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}) In [33]: cat_type = CategoricalDtype(categories=list("abcd"), ordered=True) In [34]: df_cat = df.astype(cat_type) In [35]: df_cat["A"] Out[35]: 0 a 1 b 2 c 3 a Name: A, dtype: category Categories (4, object): ['a' < 'b' < 'c' < 'd'] In [36]: df_cat["B"] Out[36]: 0 b 1 c 2 c 3 d Name: B, dtype: category Categories (4, object): ['a' < 'b' < 'c' < 'd']
转换为原始类型
使用Series.astype(original_dtype)
或者 np.asarray(categorical)
可以将Category转换为原始类型:
In [39]: s = pd.Series(["a", "b", "c", "a"]) In [40]: s Out[40]: 0 a 1 b 2 c 3 a dtype: object In [41]: s2 = s.astype("category") In [42]: s2 Out[42]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): ['a', 'b', 'c'] In [43]: s2.astype(str) Out[43]: 0 a 1 b 2 c 3 a dtype: object In [44]: np.asarray(s2) Out[44]: array(['a', 'b', 'c', 'a'], dtype=object)
categories的操作
获取category的属性
Categorical数据有 categories
和 ordered
两个属性。可以通过s.cat.categories
和 s.cat.ordered
来获取:
In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [58]: s.cat.categories Out[58]: Index(['a', 'b', 'c'], dtype='object') In [59]: s.cat.ordered Out[59]: False
重排category的顺序:
In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"])) In [61]: s.cat.categories Out[61]: Index(['c', 'b', 'a'], dtype='object') In [62]: s.cat.ordered Out[62]: False
重命名categories
通过给s.cat.categories赋值可以重命名categories:
In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [68]: s Out[68]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): ['a', 'b', 'c'] In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories] In [70]: s Out[70]: 0 Group a 1 Group b 2 Group c 3 Group a dtype: category Categories (3, object): ['Group a', 'Group b', 'Group c']
使用rename_categories可以达到同样的效果:
In [71]: s = s.cat.rename_categories([1, 2, 3]) In [72]: s Out[72]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [1, 2, 3]
或者使用字典对象:
# You can also pass a dict-like object to map the renaming In [73]: s = s.cat.rename_categories({1: "x", 2: "y", 3: "z"}) In [74]: s Out[74]: 0 x 1 y 2 z 3 x dtype: category Categories (3, object): ['x', 'y', 'z']
使用add_categories添加category
可以使用add_categories来添加category:
In [77]: s = s.cat.add_categories([4]) In [78]: s.cat.categories Out[78]: Index(['x', 'y', 'z', 4], dtype='object') In [79]: s Out[79]: 0 x 1 y 2 z 3 x dtype: category Categories (4, object): ['x', 'y', 'z', 4]
使用remove_categories删除category
In [80]: s = s.cat.remove_categories([4]) In [81]: s Out[81]: 0 x 1 y 2 z 3 x dtype: category Categories (3, object): ['x', 'y', 'z']
删除未使用的cagtegory
In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"])) In [83]: s Out[83]: 0 a 1 b 2 a dtype: category Categories (4, object): ['a', 'b', 'c', 'd'] In [84]: s.cat.remove_unused_categories() Out[84]: 0 a 1 b 2 a dtype: category Categories (2, object): ['a', 'b']
重置cagtegory
使用set_categories()
可以同时进行添加和删除category操作:
In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category") In [86]: s Out[86]: 0 one 1 two 2 four 3 - dtype: category Categories (4, object): ['-', 'four', 'one', 'two'] In [87]: s = s.cat.set_categories(["one", "two", "three", "four"]) In [88]: s Out[88]: 0 one 1 two 2 four 3 NaN dtype: category Categories (4, object): ['one', 'two', 'three', 'four']
category排序
如果category创建的时候带有 ordered=True , 那么可以对其进行排序操作:
In [91]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True)) In [92]: s.sort_values(inplace=True) In [93]: s Out[93]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): ['a' < 'b' < 'c'] In [94]: s.min(), s.max() Out[94]: ('a', 'c')
可以使用 as_ordered() 或者 as_unordered() 来强制排序或者不排序:
In [95]: s.cat.as_ordered() Out[95]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): ['a' < 'b' < 'c'] In [96]: s.cat.as_unordered() Out[96]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): ['a', 'b', 'c']
重排序
使用Categorical.reorder_categories() 可以对现有的category进行重排序:
In [103]: s = pd.Series([1, 2, 3, 1], dtype="category") In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True) In [105]: s Out[105]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [2 < 3 < 1]
多列排序
sort_values 支持多列进行排序:
In [109]: dfs = pd.DataFrame( .....: { .....: "A": pd.Categorical( .....: list("bbeebbaa"), .....: categories=["e", "a", "b"], .....: ordered=True, .....: ), .....: "B": [1, 2, 1, 2, 2, 1, 2, 1], .....: } .....: ) .....: In [110]: dfs.sort_values(by=["A", "B"]) Out[110]: A B 2 e 1 3 e 2 7 a 1 6 a 2 0 b 1 5 b 1 1 b 2 4 b 2
比较操作
如果创建的时候设置了ordered==True ,那么category之间就可以进行比较操作。支持 ==
, !=
, >
, >=
, <
, 和 <=
这些操作符。
In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True)) In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True)) In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True)) In [119]: cat > cat_base Out[119]: 0 True 1 False 2 False dtype: bool In [120]: cat > 2 Out[120]: 0 True 1 False 2 False dtype: bool
其他操作
Cagetory本质上来说还是一个Series,所以Series的操作category基本上都可以使用,比如: Series.min(), Series.max() 和 Series.mode()。
value_counts:
In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"])) In [132]: s.value_counts() Out[132]: c 2 a 1 b 1 d 0 dtype: int64
DataFrame.sum():
In [133]: columns = pd.Categorical( .....: ["One", "One", "Two"], categories=["One", "Two", "Three"], ordered=True .....: ) .....: In [134]: df = pd.DataFrame( .....: data=[[1, 2, 3], [4, 5, 6]], .....: columns=pd.MultiIndex.from_arrays([["A", "B", "B"], columns]), .....: ) .....: In [135]: df.sum(axis=1, level=1) Out[135]: One Two Three 0 3 3 0 1 9 6 0
Groupby:
In [136]: cats = pd.Categorical( .....: ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"] .....: ) .....: In [137]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]}) In [138]: df.groupby("cats").mean() Out[138]: values cats a 1.0 b 2.0 c 4.0 d NaN In [139]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) In [140]: df2 = pd.DataFrame( .....: { .....: "cats": cats2, .....: "B": ["c", "d", "c", "d"], .....: "values": [1, 2, 3, 4], .....: } .....: ) .....: In [141]: df2.groupby(["cats", "B"]).mean() Out[141]: values cats B a c 1.0 d 2.0 b c 3.0 d 4.0 c c NaN d NaN
Pivot tables:
In [142]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) In [143]: df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]}) In [144]: pd.pivot_table(df, values="values", index=["A", "B"]) Out[144]: values A B a c 1 d 2 b c 3 d 4
到此这篇关于Pandas数据类型之category的用法的文章就介绍到这了,更多相关category的用法内容请搜索趣讯吧以前的文章或继续浏览下面的相关文章希望大家以后多多支持趣讯吧!
推荐阅读
-
用pandas库中的diff()函数处理非平稳的时间序列
-
pandas中的concat函数如何实现索引重置
pandas中的concat函数如何实现索引重置这篇文章将为大家详...
-
pandas中的concat函数如何实现指定索引
pandas中的concat函数如何实现指定索引这篇文章主要介绍了...
-
Pandas Apply怎么用
PandasApply怎么用这篇文章将为大家详细讲解有关Pand...
-
Pandas中如何实现行的条件选择
Pandas中如何实现行的条件选择这篇文章主要介绍了Pandas...
-
Pandas数据存储的示例分析
Pandas数据存储的示例分析这篇文章主要为大家展示了“Panda...
-
Python中怎么动态声明变量赋值
这篇文章将为大家详细讲解有关Python中怎么动态声明变量赋值,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文...
-
python中变量的存储原理是什么
-
Python中怎么引用传递变量赋值
这篇文章将为大家详细讲解有关Python中怎么引用传递变量赋值,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文...
-
python中怎么获取程序执行文件路径
python中怎么获取程序执行文件路径,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的...