python如何使用lru_cache缓存
python如何使用lru_cache缓存
这篇文章主要为大家展示了“python如何使用lru_cache缓存”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“python如何使用lru_cache缓存”这篇文章吧。
lru_cache 缓存
位于functools模块的lru_cache
装饰器提供了缓存功能,如下结合它和递归求解斐波那契数列第n:
importfunctools@functools.lru_cache(maxsize=128)deffibonacci(n):ifn==0:return0elifn==1:return1returnfibonacci(n-1)+fibonacci(n-2)
因此,下面的递归写法非常低效,存在重复求解多个子问题的情况:
deffibonacci(n):ifn==0:#Thereisno0'thnumberreturn0elifn==1:#Wedefinethefirstnumberas1return1returnfibonacci(n-1)+fibonacci(n-2)
以上是“python如何使用lru_cache缓存”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注恰卡编程网行业资讯频道!
推荐阅读
-
Python 3.12 新特性解析:模式匹配增强与性能优化实战
-
Lightly IDE 深度评测:轻量级 Python 开发工具是否适合团队协作?
-
VS Code 自定义配置:JSON 文件修改、代码片段与任务自动化脚本
-
Python 虚拟环境选择:venv、conda、poetry 的适用场景对比
-
PyCharm+GitHub Copilot:Python 开发中 AI 辅助编码的最佳实践
-
PyCharm 无法识别虚拟环境?5 步排查 Python 解释器配置问题
-
数据科学工具链:Jupyter Notebook+RStudio+Python 的协同工作流
-
Python 3.12 新特性:模式匹配增强与性能改进实战
-
Lightly IDE 适合谁?轻量级 Python 开发工具深度评测
-
Python IDE 终极对比:PyCharm vs VS Code vs Jupyter Notebook
-
Python 3.12 新特性解析:模式匹配增强与性能优化实战
-
Lightly IDE 深度评测:轻量级 Python 开发工具是否适合团队协作?
-
VS Code 自定义配置:JSON 文件修改、代码片段与任务自动化脚本
-
Python 虚拟环境选择:venv、conda、poetry 的适用场景对比
-
PyCharm+GitHub Copilot:Python 开发中 AI 辅助编码的最佳实践
-
PyCharm 无法识别虚拟环境?5 步排查 Python 解释器配置问题
-
数据科学工具链:Jupyter Notebook+RStudio+Python 的协同工作流
-
Python 3.12 新特性:模式匹配增强与性能改进实战
-
Lightly IDE 适合谁?轻量级 Python 开发工具深度评测
-
Python IDE 终极对比:PyCharm vs VS Code vs Jupyter Notebook
-
Python 3.12 新特性解析:模式匹配增强与性能优化实战
-
Lightly IDE 深度评测:轻量级 Python 开发工具是否适合团队协作?
-
VS Code 自定义配置:JSON 文件修改、代码片段与任务自动化脚本
-
Python 虚拟环境选择:venv、conda、poetry 的适用场景对比
-
PyCharm+GitHub Copilot:Python 开发中 AI 辅助编码的最佳实践
-
PyCharm 无法识别虚拟环境?5 步排查 Python 解释器配置问题
-
数据科学工具链:Jupyter Notebook+RStudio+Python 的协同工作流
-
Python 3.12 新特性:模式匹配增强与性能改进实战
-
Lightly IDE 适合谁?轻量级 Python 开发工具深度评测
-
Python IDE 终极对比:PyCharm vs VS Code vs Jupyter Notebook