Apriori算法如何进行关联分析
这篇文章给大家介绍Apriori算法如何进行关联分析,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
从大规模数据集中寻找物品间的隐 含关系被称作关联分析(associationanalysis)或者关联规则学习(associationrulelearning)
1、Apriori算法
(1)关联分析
关联分析是一种在大规模数据集中寻找有趣关系的任务。这些关系可以有两种形式:频繁项集或者关联规则。频繁项集(frequentitemsets)是经常出现在一块的物品的集合,关联规则 (associationrules)暗示两种物品之间可能存在很强的关系
样本举例:
交易号码 | 商品 |
---|
0 | 豆奶、莴苣 |
1 | 莴苣,尿布,葡萄酒,甜菜 |
2 | 豆奶,尿布,葡萄酒,橙汁 |
3 | 莴苣,豆奶,尿布,葡萄酒 |
4 | 莴苣,豆奶,尿布,橙汁 |
一个项集的支持度(support)被定义为数据集中包含该项集的记录所占的比例,{豆奶)的支持度为4/5。而在5条交易记录中有3条包含{豆奶,尿布},因此{豆奶,尿布}的支持度为3/5。支持度是针对项集来说的,因此可以定义一个最小支持度,而只保留满足最小支持度的项集。
可信度或置信度(confidence)是针对一条诸如{尿布}->{葡萄酒}的关联规则来定义的。这条规则的可信度被定义为“支持度({尿布,葡萄酒})/支持度({尿布})”。从上述表格可以看到,由于{尿布,葡萄酒}的支持度为3/5,尿布的支持度为4/5,所以“尿布—>葡萄酒”的可信度为3/4=0.75。 这意味着对于包含“尿布”的所有记录,我们的规则对其中75%的记录都适用。
非频繁项集定义:就是项目里面没有这个商品,然后就一定不会有此商品的频繁项集合。也就是没有小项目商品,就不会有包含它的集合。
Apriori算法是发现频繁项集的一种方法。Apriori算法的两个输人参数分别是最小支持度和数据集。该算法首先会生成所有单个物品的项集列表。接着扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后,对剩下来的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行直到所有项集都被去掉。
伪代码如下:
对数据集中的每条交易记录tran
对每个候选项集can:
检查一下can是否是tran的子集:
如果是,则增加can的计数值
对每个候遙项集:
如果其支持度不低于最小值,则保留该项集
返回所有频繁项集列表
(1)构建第一个候选项集集合
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
(2)构建大于最小支持度的频繁项集
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if can not in ssCnt:
ssCnt[can]=1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData#返回符合支持度的子项,以及所有项目计算的支持度
当集合中项的个数大于0时
构建一个k个项组成的候选项集的列表
检查数据以确认每个项集都是频繁的
保留频繁项集并构建k+1项组成的候选项集的列表
#构建多项的频繁项目集
def aprioriGen(Lk, k): #creates Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2: #if first k-2 elements are equal
retList.append(Lk[i] | Lk[j]) #set union
return retList
#整体Apriori函数代码,得到所有频繁项集和符合最小支持度要求的集合
def apriori(dataSet, minSupport = 0.5):
C1 = createC1(dataSet)
D = list(map(set, dataSet))
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
supportData.update(supK)#update() 函数把字典dict2的键/值对更新到dict里
L.append(Lk)
k += 1
return L, supportData
(2) 从频繁项集中挖掘关联规则
对于关联规则,我们也有类似的量化方法,这种量化指标称为可信度。一条规则P—>H的可信度定义为Support(P|H)/support(P),在python中操作符丨表示集合的并操作,而数学上集合并的符号是U。P|H是指所有出现在集合P或者集合H中的元素。前面一节已经计算了所有频繁项集支持度。现在想获得可信度,所需要做的只是取出那些支持度值做一次除法运算。
如果某条规则并不满足最小可信度要求,那么该规则的所有子集也不会满足最小可信度要求
def generateRules(L, supportData, minConf=0.7): #supportData is a dict coming from scanD
bigRuleList = []
for i in range(1, len(L)):#only get the sets with two or more items
for freqSet in L[i]:
print(L[i],freqSet)
H1 = [frozenset([item]) for item in freqSet]
print("i",i,"H1",H1)
if (i > 1):
rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
else:
calcConf(freqSet, H1, supportData, bigRuleList, minConf)
return bigRuleList
def calcConf(freqSet, H, supportData, brl, minConf=0.7):
prunedH = [] #create new list to return
for conseq in H:
conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence
if conf >= minConf:
print(freqSet-conseq,'-->',conseq,'conf:',conf)
brl.append((freqSet-conseq, conseq, conf))
prunedH.append(conseq)
return prunedH
def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
print("freqSet:",freqSet)
m = len(H[0])
if (len(freqSet) > (m + 1)): #try further merging
Hmp1 = aprioriGen(H, m+1)#create Hm+1 new candidates
print("Hmp1:",Hmp1)
Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
print("Hmp1:",Hmp1)
if (len(Hmp1) > 1): #need at least two sets to merge
print("len(Hmp1):",len(Hmp1))
rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)
print("__")
关于Apriori算法如何进行关联分析就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。