Logistic回归样本量计算方法有哪些,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
Logistic 回归(logistic regression)模型被广泛应用于各学科领域,如医学、社会科学、机器学习等,主要适用于因变量是分类变量的情况,尤其当因变量属于 0⁃1 变量。该模型采用的参数估计方法是 极 大 似 然 估 计(maximum likelihood estimate,MLE),这就需要足够的样本量来保证参数估计的准确性,而样本量的估计又是常常困扰研究者的一个问题,以下将汇总二分类 Logistic 回归分析中几种常用的样本量确定方法。
经验方法
公式法
式(1)中 p1为 X 取均值条件下 Y = 1 发生的频率,b 为要度量的效应大小,亦即 X 所对应回归系数的估计值。
式(2)中p为总的阳性结局发生频率,B为X=1的个体在总观察人数中所占的比例(流行病学研究中对应于暴露比例),p0和 p1分别为 X=0 和 X=1时的阳性结局发生频率。多因素Logistic回归样本量计算公式为:
软件实现
【PASS】
关于Logistic回归样本量计算方法有哪些问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注恰卡编程网行业资讯频道了解更多相关知识。
如何进行无序多分类logistic回归分析
采用Logistic回归分析时需注意的问题有哪些
采用Logistic回归分析时需注意的问题有哪些采用Logisti...
用户名
密码
记住登录状态 忘记密码?
邮箱
确认密码
我已阅读并同意 用户协议