怎么用Python进行栅格数据的分区统计和批量提取

小编给大家分享一下怎么用Python进行栅格数据的分区统计和批量提取,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

有时候我们会有这样的想法,就是针对某个区域的栅格数据,要提取它的平均值或者其他统计指标,比如在一个省内提取多年的降雨数据,最后分区域地计算一些统计值,或者从多个栅格数据中提取某个区域的数值形成一个序列。为了方便,画一个示意图看看,比如就像提取这个区域中的某一个市的区域,然后形成一个序列数据,这就可以使用rasterstats库了,此外的分区统计也可以用这个库

这个实验使用的数据格式分别是栅格(*.tif)和矢量(.shp),之后的分区统计操作和栅格数据的提取都是源于这两类数据。为了能使用上这个rasterstats库,选择了在google colab平台运行脚本,因为安装库实在是太方便了,在win上老是安装不上的,在google notebook立马就搞定了,而且可以把数据存储到谷歌云盘,直接在notebook中就是可以链接使用的

怎么用Python进行栅格数据的分区统计和批量提取

那么现在就开始做测试,使用的数据就是左侧的栅格和矢量数据集导入相关的模块

importgeopandasasgpd
importpandasaspd
importnumpyasnp
importmatplotlib.pyplotasplt
importrasterio
importrasterstats
fromrasterio.plotimportshow
#show()方法用来展示栅格图形
fromrasterio.plotimportshow_hist
#用来展示直方图
importcartopy.crsasccrs
importcartopy.featureascfeature
fromcartopy.mpl.tickerimportLongitudeFormatter,LatitudeFormatter

使用geopandas和rasterio分别读取矢量和栅格数据

#使用geopandas读取矢量数据
districts=gpd.read_file('/content/drive/MyDrive/Datashpraster/Data/Districts/districts.shp')

#使用rasterio读取栅格数据,栅格数据和矢量数据的坐标投影需要一致
raster=rasterio.open('/content/drive/MyDrive/Datashpraster/Data/RainfallDataRasters/2020-4-1.tif')
#把矢量数据和栅格数据绘制到一个axis上,这个axis不是坐标轴,而是图形
plt.rcParams['font.family']='TimesNewRoman'
plt.rcParams['font.size']=20

fig,(ax1,ax2)=plt.subplots(1,2,figsize=(15,6))

show(raster,ax=ax1,title='Rainfall')
#读取进来的矢量数据可以直接调用gpd的plot()方法绘制
districts.plot(ax=ax1,facecolor='None',edgecolor='red')
show_hist(raster,ax=ax2,title='hist')

plt.show()

先绘制一下结果看看

怎么用Python进行栅格数据的分区统计和批量提取

读取栅格数据:

#提取雨量栅格值到numpy数组
#遵循GDAL规则从第一波段读取
rainfall_data=raster.read(1)
rainfall_data

怎么用Python进行栅格数据的分区统计和批量提取

开始分区统计:

#设置坐标变换信息
affine=raster.transform

#准备开始进行空间分区计算
#第一个参数是矢量分区,第二个是栅格,第三个是坐标变换信息,第四个是统计均值
avg_rallrain=rasterstats.zonal_stats(districts,rainfall_data,affine=affine,stats=['mean'],geojson_out=True)
#avg_rallrain

#除了统计平均值之外,还有最大最小值那些

绘制一下,只是一个简单的图形而已

怎么用Python进行栅格数据的分区统计和批量提取

当然第二部分更有意思,就是从多个分散的栅格数据中提取数据形成一个序列

,就是这些tif数据

怎么用Python进行栅格数据的分区统计和批量提取

loop这些栅格数据集:

怎么用Python进行栅格数据的分区统计和批量提取

获得提取到的结果,没错,就是这么一个序列数据,然后就是绘图了

怎么用Python进行栅格数据的分区统计和批量提取

转换数据格式

#将Date列转为时间型
data['Date']=pd.to_datetime(data['Date'],infer_datetime_format=True)

#print(data)

data['Date']=data['Date'].dt.date
print(data)

怎么用Python进行栅格数据的分区统计和批量提取

绘图结果就是简单的图形而已

#准备绘制图形
fig,(ax1,ax2)=plt.subplots(2,1,figsize=(18,6))
plt.rcParams['font.size']=15

data.plot(x='Date',y='Average_RF_Porto',ax=ax1,kind='bar',title='Avg_Rail_Porto')
data.plot(x='Date',y='Average_RF_Faro',ax=ax2,kind='bar',title='Avg_Rail_Faro',color='red')

#自动调整图形的分布
plt.tight_layout()
plt.show()

怎么用Python进行栅格数据的分区统计和批量提取

结果就这样一个序列图,目的就是从栅格提取指定的研究区,然后提取栅格的值,再来绘图

虽然感觉不是那么花里胡哨的图,但这个应该还是比较实用的,特别是大批量提取栅格值的时候。由于在google colab里面操作的步骤比较多,中间可能有省略的地方,但重要的应该都在文中了,当然也可以迁移运用到其他地方,也可以查看一下这个第三方库的教程,比如read(1)是什么意思,官网的docs就写得有,实在是很方便的

看完了这篇文章,相信你对“怎么用Python进行栅格数据的分区统计和批量提取”有了一定的了解,如果想了解更多相关知识,欢迎关注恰卡编程网行业资讯频道,感谢各位的阅读!

发布于 2021-05-30 14:04:23
收藏
分享
海报
0 条评论
181
上一篇:Python图片处理之图片裁剪的示例分析 下一篇:如何使用Python实现zip文件密码破解
目录

    推荐阅读

    0 条评论

    本站已关闭游客评论,请登录或者注册后再评论吧~

    忘记密码?

    图形验证码