sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)sin平方x。解答过程如下:解:∫(sinx)^2dx=(1/2)∫(1-cos2x)dx=(1/2)x-(1/4)sin2x+C(C为常数)扩展资料:分部积分:(uv)’=u’v+uv’得:u’v=(uv)’-uv’两边积分得:∫ u’v dx=∫ (uv)’ dx – ∫ uv’ dx即:∫ u’v dx = uv – ∫ uv’ d,这就是分部积分公式也可简写为:∫ v du = uv – ∫ u dv1)∫0dx=c 2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c
sin平方x的积分= 1/2x -1/4 sin2x + C(C为常数)。
解答过程如下:
解:∫(sinx)^2dx
=(1/2)∫(1-cos2x)dx
=(1/2)x-(1/4)sin2x+C(C为常数)
扩展资料:
分部积分:
(uv)’=u’v+uv’
得:u’v=(uv)’-uv’
两边积分得:∫ u’v dx=∫ (uv)’ dx – ∫ uv’ dx
即:∫ u’v dx = uv – ∫ uv’ d,这就是分部积分公式
也可简写为:∫ v du = uv – ∫ u dv
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
sinx的平方不等于sin平方x,一个是先将X求出平方,再进行SIN运算;另一个是先运算SINx,再求平方。在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。