顶点式二次函数表达式(顶点式二次函数表达式解析)

二次函数作为中考试题中不可忽视的一部分,其重要程度相信大家均有领悟。今天让我们继续探究一下二次函数的其中一个重要知识点,什么是二次函数顶点式。

根据二次函数五大经典的函数图像模型的理解,我们一步步地探究二次函数顶点式。

表达式为y=a(x-h)²(a≠0,a、h为常数),顶点坐标:(h,0),y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标:(h,k)。

从上述图例可知,对称轴为直线x=h,顶点的位置和图像的开口方向与最简二次函数y=ax²的图像相同,y=a(x-h)²,当x=h时,y有最大或最小值0,y=a(x-h)²+k,当x=h时,y有最大或最小值k。

二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,不能因h前是负号就简单地认为是向左平移,因公式y=a(x-h)²+k本身就带着“-”号。同理,y=a(x-h)²平移成y=a(x-h)²+k时,k>0,k值越大图像顶点距x轴且为正方向越远,k<0,k值越大图像顶点距x轴且为负方向越远。这里我们有一个口诀可以进行记忆,“左加右减,上加下减”。

下面我们再来探讨一下关于顶点式的顶点坐标的由来。

我们对顶点式来进行一下变形。

我们把顶点式转化成一般式时,不难发现h=-b/2a,k=(4ac-b²)/4a。这正是二次函数一般式的顶点坐标公式,大家了解了吗?

课堂笔记:

①当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

②当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动h个单位得到;

③当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

④当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动k个单位可得到y=a(x-h)²+k的图象;

⑤当h<0,k>0时,将抛物线y=ax²向左平行移动h个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

⑥当h<0,k<0时,将抛物线y=ax²向左平行移动h个单位,再向下移动k个单位可得到y=a(x-h)²+k的图象。

练一练:

请大家核对一下答案:

同学们,大家明白了吗?

发布于 2022-07-11 16:35:00
收藏
分享
海报
0 条评论
16
上一篇:收集数据的常用方法有哪些(常见的7大数据收集方法) 下一篇:icloud怎么取消每月6元(icloud关闭自动续费教程)
目录

    推荐阅读

    0 条评论

    本站已关闭游客评论,请登录或者注册后再评论吧~

    忘记密码?

    图形验证码